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1 Introduction

Introduction

This lecture begins our detailed study of multilevel modeling procedures.

We concentrate in this lecture on an approach using R and the lmer()
function.

Make sure that the lme4 package is installed on your computer.



2 The Radon Study

The Radon Study

One of the introductory examples in Gelman & Hill , and our first example
of multilevel modeling, concerns the level of radon gas in houses in Minnesota.

Radon is a carcinogen estimated to cause several thousand lung cancer deaths
per year in the U.S.

The Radon Study

The distribution of radon in American houses varies greatly. Some houses
have dangerously high concentrations.

The EPA did a study of 80,000 houses throughout the country, in order to
better understand the distribution of radon.

Two important predictors were available:

• Whether the measurement was taken in the basement, or the first floor,
and

• The level of uranium in the county

Higher levels of uranium are expected to lead to higher radon levels, in
general. And, in general, more radon will be measured in the basement than on
the first floor.

3 Organizing Hierarchical Data

Hierarchical Data

The data are organized hierarchically in the radon study.

Houses are situated within 85 counties. Each house has a radon level that is
the outcome variable in the study, and a binary floor indicator (0 for basement,
1 for first floor) which is a potential predictor.

Uranium levels are measured at the county level. There are 85 counties, and
for each one a uranium background level is available.
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We say that the level-1 data is at the house level, and the level-2 data is at
the county level. Houses are grouped within counties.

Organizing Hierarchical Data

There are a number of ways to organize hierarchical data, and a number of
different ways to write the same hierarchical model. One method breaks the
data down by levels, and links the data through an intermediary variable.

This method offers some important advantages. It saves some space, and it
emphasizes the hierarchical structure of the data.

Two Files for Two Levels

The level-1 file looks like this.

county radon floor

1 1 2.2 1

2 1 2.2 0

3 1 2.9 0

4 1 1.0 0

5 2 3.1 0

6 2 2.5 0

7 2 1.5 0

. . . .

. . . .

917 84 5.0 0

918 85 3.7 0

919 85 2.9 0

Two Files for Two Levels

The level-2 file looks like this

county uranium

1 1 -0.689047595

2 2 -0.847312860

3 3 -0.113458774

. . .

. . .

85 85 0.355286981

3



A Single File for All Levels

An alternative, less efficient file structure puts all the data in the same file.

By necessity, some data are redundant.

The full data file looks like this:

radon floor uranium county

1 0.78845736 1 -0.689047595 1

2 0.78845736 0 -0.689047595 1

3 1.06471074 0 -0.689047595 1

4 0.00000000 0 -0.689047595 1

5 1.13140211 0 -0.847312860 2

6 0.91629073 0 -0.847312860 2

. . . . .

. . . . .

917 1.60943791 0 -0.090024275 84

918 1.30833282 0 0.355286981 85

919 1.06471074 0 0.355286981 85

4 “Old-Fashioned” Approaches

“Old-Fashioned” Approaches

We have potential sources of variation at the county level, and at the house
level. There are a number of potential approaches to analyzing such data that
people have used prior to the popularization of multilevel modeling.

Two such approaches, discussed by Gelman & Hill , are

• Complete Pooling. Completely ignore the fact that the relationship be-
tween radon and uranium might vary across counties, and simply pool all
the data. This model is

yi = α+ βxi + εi (1)

• No Pooling. Include county as a categorical predictor in the model, thereby
adding 85 county indicators to the model.

yi = αj[i] + βxi + εi (2)
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Fitting the Complete-Pooling Regression

First, we fit the complete-pooling model:

> radon.data ← read.table("radon.txt",header=TRUE)

> attach(radon.data)

> complete.pooling ← lm(radon ˜ f loor )

> display(complete.pooling)

lm(formula = radon ~ floor)

coef.est coef.se

(Intercept) 1.33 0.03

floor -0.61 0.07

---

n = 919, k = 2

residual sd = 0.82, R-Squared = 0.07

Fitting the No-Pooling Regression

> no.pooling ← lm(radon˜ f loor + factor (county)-1)

> display(no.pooling)

lm(formula = radon ~ floor + factor(county) - 1)

coef.est coef.se

floor -0.72 0.07

factor(county)1 0.84 0.38

factor(county)2 0.87 0.10

factor(county)3 1.53 0.44

. . .

. . .

factor(county)84 1.65 0.21

factor(county)85 1.19 0.53

---

n = 919, k = 86

residual sd = 0.76, R-Squared = 0.77
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5 Basic 2-Level Models for Hierarchical Data

Basic 2-Level Models

At level 1, we have floor as a potential predictor of radon level.

We can think of the linear regression relating floor to radon in very simple
terms.

The y-intercept is the average radon value at in the basement, i.e., when
floor = 0.

The slope is the difference between average radon levels in the basement and
first floor.

There are a number of ways we could model the situation.

Basic 2-Level Models

Our data are organized within county. Even in such a simple situation,
there are numerous potential models for the relationship between radon level
and floor.

• The slopes could vary across counties

• The intercepts could vary across counties

• Both the slopes and intercepts could vary

Gelman & Hill introduce a notation we can familiarize ourselves with, al-
though it will take a little effort getting used to. Let’s diagram these basic
models and write them in the Gelman & Hill “full data” notation.

5.1 Varying Intercept, No Predictor

Varying Intercepts, No Predictor

One model allows the intercepts to vary across county, and uses no predictors.
This model, which is formally equivalent to a one way random-effects ANOVA,
can be written as

yi = αj[i] + εi (3)
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with
εi ∼ N(0, σ2

y) (4)

and
αj[i] ∼ N(µα, σ2

α) (5)

In the above notation, “j[i]” means “the value of j assigned to the ith unit.”

Varying Intercepts, No Predictor

> M0 ← lmer(radon ˜ 1 + (1 | county ))

> display(M0)

lmer(formula = radon ~ 1 + (1 | county))

coef.est coef.se

1.31 0.05

Error terms:

Groups Name Std.Dev.

county (Intercept) 0.31

Residual 0.80

---

number of obs: 919, groups: county, 85

AIC = 2265.4, DIC = 2251

deviance = 2255.2

5.2 Varying Intercepts, Floor Predictor

Varying Intercepts, Floor Predictor

The next model adds the floor predictor, and keeps varying intercepts. This
model can be written as

yi = αj[i] + βxi + εi (6)

with
αj[i] ∼ N(µα, σ2

α) (7)

This model looks much like the “no-pooling” model we looked at before, except
that the earlier model used least squares estimation and essentially set each α
to the value obtained by fitting regression within a county. Multilevel modeling
uses a simultaneous estimation approach that is more sophisticated at dealing
with large differences in sample size across counties.
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Varying Intercepts, Floor Predictor

Here is a picture of the model with 5 counties:

Varying Intercepts, Floor Predictor

Here is how we fit this model using R.

> M1 ← lmer(radon ˜ f loor + (1 | county ))

> display(M1)

lmer(formula = radon ~ floor + (1 | county))

coef.est coef.se

(Intercept) 1.46 0.05

floor -0.69 0.07

Error terms:

Groups Name Std.Dev.

county (Intercept) 0.33

Residual 0.76

---

number of obs: 919, groups: county, 85

AIC = 2179.3, DIC = 2156

deviance = 2163.7

Varying Intercepts, Floor Predictor

This model displays fixed and random effect results. To see more detail, we
can use the summary() function.

> summary(M1)
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Linear mixed model fit by REML

Formula: radon ~ floor + (1 | county)

AIC BIC logLik deviance REMLdev

2179 2199 -1086 2164 2171

Random effects:

Groups Name Variance Std.Dev.

county (Intercept) 0.108 0.328

Residual 0.571 0.756

Number of obs: 919, groups: county, 85

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.4616 0.0516 28.34

floor -0.6930 0.0704 -9.84

Correlation of Fixed Effects:

(Intr)

floor -0.288

Note that the average intercept is 1.46, but the intercepts, across counties,
have a standard deviation of σα = 0.33.

Varying Intercepts, Floor Predictor

We can call for estimates of the county level coefficients:

> coef(M1)

$county

(Intercept) floor

1 1.1915015 -0.6929905

2 0.9276037 -0.6929905

...

83 1.5716904 -0.6929905

84 1.5906371 -0.6929905

85 1.3862299 -0.6929905

We can examine the fixed and random effects separately:

> f i x e f (M1)

(Intercept) floor

1.462 -0.693

9



Next, we examine the random effects, the amount by which the intercept in
a given county varies around the central value of 1.46.

Varying Intercepts, Floor Predictor

> ranef(M1)

$county

(Intercept)

1 -0.27009244

2 -0.53399029

...

85 -0.07536403

5.3 Uncertainties in the Estimated Coefficients

Uncertainties in the Estimates

Gelman & Hill have added a nice pair of functions for examining standard
errors quickly.

> s e . f i x e f (M1)

(Intercept) floor

0.05157 0.07043

> se.ranef (M1)

$county

[,1]

[1,] 0.24778450

[2,] 0.09982720

[3,] 0.26228596

...

[85,] 0.27967312
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5.4 Summarizing and Displaying the Fitted Model

Summarizing and Displaying the Fitted Model

We can access the components of the estimates and standard errors using
list notation in R. For example, to get a 95% confidence interval for the slope
(which, in this model, does not vary by county),

> f i x e f (M1)["floor"] + c(-2 ,2) ∗ s e . f i x e f (M1)["floor"]

[1] -0.8339 -0.5521

In extracting elements of the coefficients from coef() or ranef(), we must
first identify the grouping (county in this case). For example, here is the 95%
CI for the intercept in county 26:

> coef(M1)$county [26,1] + c(-2 ,2)∗ se.ranef (M1)$county [26]

[1] 1.219 1.507

5.5 Varying Slopes, Fixed Intercept

Varying Slopes, Fixed Intercept

Another option is to let the slopes vary, while keeping a constant intercept
This model may be written as

yi = α+ βj[i]xi + εi (8)

with
βj[i] ∼ N(µβ , σ2

β) (9)

Here is a plot of this model:
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Varying Slopes, Fixed Intercept

Fitting this model with lmer() is as follows:

> M2 ← lmer(radon ˜ f loor + ( f loor - 1 | county ))

> display(M2)

lmer(formula = radon ~ floor + (floor - 1 | county))

coef.est coef.se

(Intercept) 1.33 0.03

floor -0.55 0.09

Error terms:

Groups Name Std.Dev.

county floor 0.34

Residual 0.81

---

number of obs: 919, groups: county, 85

AIC = 2258.8, DIC = 2234

deviance = 2242.5

Varying Slopes, Fixed Intercept

As before, we can examine individual coefficients:

> coef(M2)

$county

(Intercept) floor

1 1.326744 -0.5522006

2 1.326744 -0.9269289
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3 1.326744 -0.5361960

: : :

84 1.326744 -0.5455763

85 1.326744 -0.5546372

5.6 Varying Slopes, Varying Intercepts

Varying Slopes, Varying Intercepts

Here is a model where the intercept and slope vary by group:

yi = αj[i] + βj[i]xi + εi (10)

In this model, not only do the α and β coefficients have estimated standard
errors, but they are also allowed to correlate across counties. (See p. 279 of
Gelman & Hill.) Here is a plot of this model:

Varying Slopes, Varying Intercepts

Fitting this model goes like this:

> M3 ← lmer(radon ˜ f loor + (1 + f loor | county) )

> display(M3)

lmer(formula = radon ~ floor + (1 + floor | county))

coef.est coef.se
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(Intercept) 1.46 0.05

floor -0.68 0.09

Error terms:

Groups Name Std.Dev. Corr

county (Intercept) 0.35

floor 0.34 -0.34

Residual 0.75

---

number of obs: 919, groups: county, 85

AIC = 2180.3, DIC = 2154

deviance = 2161.1

Varying Slopes, Varying Intercepts

Now, of course, we see differing slopes and intercepts across counties.

> coef(M3)

$county

(Intercept) floor

1 1.1445240 -0.5406161

2 0.9333816 -0.7708545

3 1.4716889 -0.6688832

: : :

84 1.5991210 -0.7327245

85 1.3787927 -0.6531793
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